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Abstract

The state of a POMDP can often be factored into a tu-
ple of n state variables. The corresponding flat model,
with size exponential in n, may be intractably large. We
present a novel method called conditionally irrelevant
variable abstraction (CIVA) for losslessly compressing
the factored model, which is then expanded into an ex-
ponentially smaller flat model in a representation com-
patible with many existing POMDP solvers. We applied
CIVA to previously intractable problems from a robotic
exploration domain. We were able to abstract, expand,
and approximately solve POMDPs that had up to 1024

states in the uncompressed flat representation.

Introduction
An agent planning in the real world often faces uncertainty
about the state of the world and about the future effects of
its actions. Domains with these types of uncertainty can be
accurately modeled as partially observable Markov decision
processes (POMDPs). The general problem of exactly solv-
ing POMDPs is known to be intractable, but recently devel-
oped approximation techniques can often find good policies
for relatively large POMDPs, depending on how the prob-
lem is structured (Spaan & Vlassis, 2005; Pineau & Gordon,
2005).

The state of a POMDP can often be factored into a tuple of
n state variables. For example, in a robotic exploration prob-
lem, each cell in the map may have a corresponding variable
whose value represents the contents of the cell. The cor-
responding unfactored or “flat” model has state space size
exponential in n, which may be intractably large. This issue
is important because most existing POMDP solvers operate
on a flat model representation, with only a few exceptions
(Hansen & Feng, 2000; Poupart & Boutilier, 2004).

However, in some problems there are efficient ways to
identify irrelevant variables that cannot affect the solution.
In that case the irrelevant variables can be abstracted away,
exponentially shrinking the state space in the flat model
(Boutilier & Dearden, 1994). If the overall task can be hi-
erarchically decomposed into subtasks, one can take a finer-
grained approach and temporarily abstract away variables
that are relevant overall but irrelevant within a particular
subtask (Pineau, Gordon, & Thrun, 2003). When interleav-
ing planning and execution, the amount of abstraction may

also vary at different planning horizons (Baum & Nicholson,
1998).
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Figure 1: CIVA Process Diagram.

We present an alternative method called conditionally ir-
relevant variable abstraction (CIVA) for losslessly reducing
the size of the factored model. A state variable is said to
be conditionally irrelevant for a given partial assignment to
other state variables if certain conditions are satisfied that
guarantee it can be temporarily abstracted away without af-
fecting policy optimality. Figure 1 shows how CIVA fits into
the overall planning process. Our method considers only
factored state, although factored actions and observations
can also be useful (Guestrin, Koller, & Parr, 2001; Feng &
Hansen, 2001).

We applied CIVA to previously intractable POMDPs from
a robotic exploration domain. We were able to abstract, ex-
pand, and approximately solve POMDPs that had up to 1024

states in the uncompressed flat representation. The resulting
policies outperformed hand-tuned heuristic policies both in
simulation and in testing onboard a robot in a controlled out-
door environment.

Example Problem
Our primary testing domain for CIVA was the LifeSurvey
robotic exploration problem. We will use MiniLifeSurvey, a
simplified version of LifeSurvey, to provide intuition about
conditional irrelevance. In MiniLifeSurvey, a robot is mov-
ing through a one-dimensional map from west to east. The
robot has sensors for detecting life en route, but it must bal-
ance the cost of using these sensors against the expected
value of the resulting data. The robot has three available
actions:

1. move: Moves the robot one cell to the east, with a cost
of -1. Always returns a null observation.



2. scan: Applies the robot’s long-range sensor, providing
noisy information as to whether life is present in the cell
just ahead of the robot, with a cost of -2. Returns either
a positive or negative observation.

3. sample: Applies the robot’s short-range sensor to
the current cell, with a cost of -10. Returns either a
positive or negative observation. If the cell con-
tains detectable life, the robot receives a reward of +20.

The variables in MiniLifeSurvey are:
1. X1: The position of the robot, ranging from 1 to k.

The position is always known and advances determinis-
tically when the move action is applied.

2. Y1, . . . , Yk: Each Yi has the value L or N (“life” or “no
life”) depending on whether cell i of the map contains
detectable life or not.

The robot starts in cell 1 and has remote sensing data that
provides independent prior probabilities for the Yi variables.
The problem ends when the robot applies the move action
in the rightmost cell.
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Figure 2: The MiniLifeSurvey problem.

Figure 2 shows an instance of MiniLifeSurvey with k = 5.
The priors Pr(Yi = L) for each Yi are shown below the map.
The robot is shown at position X1 = 3.

The key insight underlying CIVA is that in a structured
problem like MiniLifeSurvey the robot only needs to con-
sider joint assignments to a few of the state variables at any
one time. In position X1 = 3, only the variables Y3 and Y4

are immediately relevant in the sense that they can affect the
rewards or observations in the next time step. Because the
robot only moves forward, variables Y1 and Y2 can have no
further effect on the system. Variable Y5 will be important
later, but its value cannot be influenced by any of the other
Yi variables or the robot’s action, so in considering the next
action to take the robot can temporarily disregard Y5 and re-
construct its probability distribution later as needed. (These
concepts will be formalized later.)
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Figure 3: A state transition in the abstract model.

Figure 3 shows one example state transition for the move
action in the abstract model produced by CIVA. Each ab-
stract state in the reduced model corresponds to an equiva-
lence class of states in the original model. For example, the
abstract state on the left corresponds to the set of all states
with X1 = 3, Y3 = L, Y4 = N, and any value for the other
Yi variables. The arrows in the diagram are labeled with
transition probabilities.

As we will explain later, the abstract states in the abstract
model specify values only for the Yi variables that are con-
ditionally relevant given the value of X1. With X1 = 3, Y3

and Y4 are conditionally relevant; with X1 = 4, Y4 and Y5

are conditionally relevant.
Abstracting away variables in the factored model results

in an exponentially smaller flat model. In the uncompressed
MiniLifeSurvey model with map length k, there are k possi-
ble values for X1 and k binary-valued variables Yi, so there
are k × 2k states. In the CIVA-compressed model, only the
position and two of the Yi variables need to be tracked at a
time, so there are just 4k abstract states.

POMDP Background
A POMDP is described by a tuple P =
〈S,A, T, R, γ,O, O, b0〉. S is a finite set of world
states. A is a finite set of actions available to the agent. T is
a transition function such that T (s, a, s′) is the probability
of transitioning from state s to state s′ when applying action
a. R is a reward function such that R(s, a) is the immediate
reward received by the agent for taking action a in state s.
γ < 1 is the discount factor. O is a finite set of observations.
O is an observation function such that O(a, s′, o) is the
probability of receiving observation o if the agent applies
action a and the world transitions to state s′. b0 is the
agent’s initial belief, such that b0(s) is the probability that
the initial state is s.

A POMDP policy is a mapping from histories to actions
in the form

at = π(a0, o0, a1, o1, . . . , at−1, ot−1). (1)

Given a system model and the initial belief b0, the agent
can use Bayesian updates to calculate the posterior belief bt

corresponding to any history and rewrite the policy in the
form at = π(bt). It is a theorem that every POMDP has an
optimal policy π∗, which among all policies π maximizes
the long-term expected reward

JP π(b) = Eπ,b0=b

[ ∞∑
t=0

γtR(st, at)

]
(2)

for all beliefs b. Solving the POMDP exactly means finding
such an optimal policy, but most practical algorithms find a
policy that is only guaranteed to be near-optimal for a given
starting belief b0.

We say that two models P = 〈S,A, T, R, γ,O, O, b0〉
and P ′ = 〈S ′,A′, T ′, R′, γ′,O′, O′, b′0〉 are policy-
compatible if A = A′ and O = O′. Policy compatibility
ensures that any policy for P ′ can be applied to P , since
policies for the two models have the same functional form
according to equation (1), although they may represent sys-
tem state and beliefs differently.

We say that P and P ′ are policy-equivalent if for every
policy π the long-term expected reward of the initial belief
is the same for the two models

JP π(b0) = JP ′
π(b′0). (3)



Policy equivalence ensures that the two models have the
same optimal policies.1 Applying CIVA to a model P pro-
duces a policy-equivalent model P ′.

Conditional Relevance
CIVA is based on the assumption that the state
can be factored into a tuple of discrete variables
〈X1, . . . , Xj , Y1, . . . , Yk〉, where X1, . . . , Xj are up-
stream variables and Y1, . . . , Yk are downstream variables.
We denote the tuple of upstream values X = 〈X1, . . . , Xj〉,
and similarly Y = 〈Y1, . . . , Yk〉. We use φ to denote the
value of particular variables; for example, φXi(s) is the
value of variable Xi in state s, and φX(s) is the joint value
of all upstream variables in state s.

Upstream variable values are always known to the agent,
transition deterministically, and are independent of the
downstream variables. Their dynamics are already specified
along with the other variables as part of the transition func-
tion T , but it is also convenient to define special notation
that reflects the additional structure. We define the upstream
transition function U such that x′ = U(x, a), where x is the
value of the upstream variables at one time step, and x′ is
the upstream value at the next time step after taking action
a.

An upstream value x is reachable if starting from the
known initial upstream value x0 there is a sequence of up-
stream transitions that reaches x. The set of all reachable
upstream values can easily be generated by forward recur-
sion from x0.

We will build up the definition of conditional relevance
in several steps. A downstream variable Yi is immediately
relevant at x, written Yi ∈ f IR(x), if it is possible for Yi to
have an “immediate effect” on the problem. That is, Yi ∈
f IR(x) unless all of the following constraints hold:
I1. Yi has no immediate effect on reward. For any state s,

let s/E denote the set of states that agree with s over
all variables other than Yi. Let a be an action, let s be a
state with φX(s) = x, and let s′ ∈ s/E. Then we must
have R(s, a) = R(s′, a).

I2. Yi has no immediate effect on observations. Let a be
an action, o be an observation, let s be a state with
φX(s) = x, and let s′ ∈ s/E. Then we must have
O(a, s, o) = O(a, s′, o).

I3. Yi has no immediate effect on the transitioning of other
variables. Let a be an action, let s be a state with
φX(s) = x, let s′ ∈ s/E, and let s′′ be an arbitrary
state. Then we must have∑

σ∈s′′/E

T (s, a, σ) =
∑

σ∈s′′/E

T (s′, a, σ). (4)

The idea is that immediately relevant variables tend to be-
come “entangled” with the rest of the system, so they typ-
ically cannot be abstracted away without losing policy-
equivalence.

1These definitions of policy compatibility and equivalence are
novel as far as we know.

A downstream variable Yi is a-predictable at x, written
Yi ∈ fP(x, a), if it is possible to reconstruct the distribu-
tion over possible values of Yi after applying action a in a
state with φX(s) = x, given only knowledge of x, a, and
b0. In other words, given x, a, and b0, the distribution over
possible values for Yi after the transition must be condition-
ally independent of all other state information, including the
preceding value of Yi and other downstream variables. The
idea is that we can temporarily “forget” probabilistic infor-
mation about the value of a variable, even one that is going
to be relevant later, if at that later point the information can
be reconstructed.

A downstream variable Yi is conditionally relevant at x,
written Yi ∈ fR(x), if either:
C1. The variable Yi is immediately relevant at x, or
C2. For some action a, (i) Yi is conditionally relevant at

x′ = U(x, a), and (ii) Yi is not a-predictable at x.

The idea is that the agent needs to keep track of probabilistic
information about a variable if it is either immediately rele-
vant or there is a future point where it is both relevant and
we have no way to reconstruct the information.

Relevance Determination
We assume that the factored model provided to CIVA speci-
fies which variables are upstream versus downstream, as this
is easy to determine manually. However, we still need a way
to determine the upstream values where downstream vari-
ables are conditionally irrelevant so we can abstract them
away. We call this problem relevance determination.

A relevance determination algorithm is exact if for any
upstream value x it calculates the exact set fR(x) as defined
above. In contrast, it is conservative if for any x it calcu-
lates a superset of fR(x). In other words, a conservative al-
gorithm errs only on the side of tagging variables relevant
when they are not. Conservative relevance determination
may result in a compressed model that is larger than nec-
essary, but it retains the key property that the original model
and compressed model are policy-equivalent.

Our approach to relevance determination is conservative.
It is a three-step process. We (1) find immediately relevant
variables, (2) find predictable variables, and (3) find condi-
tionally relevant variables.

Finding Immediately Relevant Variables
The first step in relevance determination is to calculate the
immediately relevant variables f IR(x) for every reachable
upstream value x. To ensure that the overall conditional
relevance determination is conservative, the immediate rele-
vance determination also needs to be conservative. That is,
when in doubt it must tag a variable as immediately relevant.

Checking the immediate relevance constraints I1-I3 for
Yi ∈ f IR(x) by brute force is often intractable, since each
constraint involves enumeration over the set of all states s
with φX(s) = x; this set has size exponential in the num-
ber of downstream variables. Thus tractable immediate rel-
evance determination depends on leveraging the structure of
the factored model.



CIVA is a general approach that is not tied to any par-
ticular factored representation. Possible representations for
the R, O, and T functions include decision trees (Boutilier,
Dearden, & Goldszmidt, 2000) and algebraic decision di-
agrams (ADDs) (St. Aubin, Hoey, & Boutilier, 2000),
among others. Immediate relevance determination can be
performed over any representation, but the choice of repre-
sentation affects its computational complexity.

For concreteness, we describe the process in more detail
with a particularly simple decision tree representation. Let
the functions R, O, and T be represented as decision trees
with the following variable ordering: (1) first branch on the
action, (2) then on the observation (for O only), (3) then on
upstream state variables in an arbitrary fixed order, (4) then
on downstream state variables in an arbitrary fixed order.
The T function takes two state arguments s and s′; all state
variables of s are ordered before all state variables of s′ in
the decision tree. Let nR, nO, and nT be the number of
nodes in the decision tree representations of R, O, and T
respectively.

One can determine if Yi ∈ f IR(x) using the following
procedure:

1. Check I1. Restricting the function R to a particular ac-
tion a and upstream value x corresponds to selecting
a particular subtree of the decision tree. If for every
action a the corresponding subtree does not contain a
node branching on Yi, then I1 is satisfied. Overall, this
check can be performed in order nR time (and usually
much faster, since portions of the tree relating to other
upstream values other than x can be ignored).

2. Check I2. Similar to the check of I1, this time iterating
over all combinations of actions and observations in O.
This check can be performed in order nO time.

3. Check I3. Restricting T to a particular action a and
upstream value φX(s) = x corresponds to selecting
a particular subtree. Then in order to check I3 we
must (1) sum out the Yi variable of s′ within the sub-
tree, (2) recursively canonicalize the subtree by elimi-
nating branch nodes that have identical subtrees on ei-
ther branch, and (3) check if the subtree now contains a
node branching on the Yi variable of s. This procedure
can be performed for all actions in order nT time.

Thus, for each upstream value x and variable Yi, we can
check if Yi ∈ f IR(x) in order nR + nO + nT time, which is
relatively efficient if the model is compact.

Note that not all problems with factored structure can be
compactly represented with this type of decision tree. We
expect that efficient conservative immediate relevance de-
termination algorithms exist for ADDs and under certain re-
laxations of the variable ordering constraints, but this is the
only case we have worked out in detail.

Finding Predictable Variables
The second step in relevance determination is to calculate
the a-predictable variables fP(x, a) for every reachable up-
stream value x and action a. Recall that Yi ∈ fP(x, a) if,
after applying action a in a state with X = x, it is possible
to reconstruct the probability distribution of Yi given only

knowledge x, a, and b0. Because of the way predictability
relates to conditional relevance, we say that a predictability
determination algorithm is conservative if it errs only on the
side of tagging variables not predictable.

We do not know of any tractable algorithm for exact pre-
dictability determination in the general case. Predictability
of Yi at x depends on whether or not the agent is able to
gain information about Yi on the way from the initial state
to a state with X = x, and whether that information is still
pertinent when it arrives. Since these considerations can in
general depend on the path that the agent takes through the
state space, it might be very difficult to check that a variable
is predictable over all paths.

However, if the goal is conservative predictability deter-
mination, there are several types of structure that make it
easy to prove that a variable is predictable. For example:
• If applying action a in a state with X = x overwrites all

previous information about Yi, then Yi ∈ fP(x, a). For
example, if action a flips a coin, the agent knows that
there is a 50% chance the coin shows heads after the
state transition, regardless of what information it might
have had before.

• If one can show that any path leading to a state with
X = x must pass through a state with X = x′, and en-
tering a state with X = x′ fixes a known and permanent
value for Yi, then Yi ∈ fP(x, a). For example, suppose
the only way to get hold of a fire extinguisher is to break
its glass case. Then if the agent has the fire extinguisher,
it can reconstruct the fact that the glass is broken.

In our robotic exploration domain, we rely on yet another
type of special structure that implies predictability. A vari-
able Yi is untouched at x, written Yi ∈ fU(x) if it satisfies:

U1. Yi is independent of other variables in the initial belief,
U2. The value of Yi does not change over time,
U3. Yi is not immediately relevant at x, and
U4. For every predecessor upstream value x′ such that x =

U(x′, a), Yi is untouched at x′.
If a variable is untouched at x, we can be sure that its proba-
bility distribution is unchanged from what it was in b0. This
makes it a-predictable at x for every action a. For exam-
ple, if the agent starts out believing there is a utility closet
upstairs with 50% probability, and the agent has not yet had
enough time to go upstairs and check, its current belief about
the utility closet is just its initial belief.

We can identify untouched variables using forward recur-
sion. First we mark as touched every variable that violates
U1-U3. Then we perform local updates to enforce the con-
sistency of U4; if Yi is touched at x, then Yi is marked as
touched at all successors x′ = U(x, a) of x. Local updates
are propagated forward until U4 is globally satisfied.

Finding Conditionally Relevant Variables
The final step in relevance determination is to calculate the
conditionally relevant variables fR(x) for every reachable
upstream value x. The reader may wish to review the defini-
tion of conditional relevance, conditions C1 and C2 above.

With f IR(x) and fP(x) in hand, it is straightforward to
calculate fR(x) by backward recursion. First we mark ev-



ery immediately relevant variable as conditionally relevant
to satisfy C1. Then we perform local updates to enforce the
consistency of C2. If Yi is conditionally relevant at x, then
it is marked as conditionally relevant for all predecessors x′

such that x = U(x′, a) and Yi 6∈ fP(x′, a). Local updates
are propagated backwards until C2 is globally satisfied.

Model Abstraction
This section defines the form of the abstract model produced
by CIVA. First we define the predictability transformed ver-
sion of the transition function T . Let x be an upstream value
and a be an action such that Yi ∈ fP(x, a), and let s be a
state consistent with x. The predictability of Yi means that
its probability distribution after the state transition can be
calculated given only knowledge of x, a, and b0. There are
two ways this can happen:

1. For prior states with X = x, the value of Yi after apply-
ing a depends only on a. In this case no change needs
to be made.

2. The value of Yi after applying a formally depends on
some downstream variable Ym, but in fact all reach-
able beliefs with X = x have probability distributions
for Ym that lead to the same prediction of Yi.2 In this
case, we can rewrite the transition function so that, in-
dependent of the value of Ym, the posterior probabil-
ity distribution of Yi is its reconstructed value as an a-
predictable variable.

The result of performing this rewrite wherever possible is
denoted T̃ .

Conditional relevance defines an equivalence relation E
on states, such that for two states s, s′, we have E(s, s′) if
s and s′ both (i) share the same upstream value x and (ii)
agree on the values of the conditionally relevant downstream
variables fR(x). E induces a partition of S into equivalence
classes of similar states. Let s/E = {s′ | E(s, s′)} denote
the class containing state s.

We will abuse notation by writing versions of T̃ , O, and
R that take equivalence classes as arguments. We define

T̃ (s, a, s′/E) =
∑

σ∈s′/E

T (s, a, σ), (5)

and we define T̃ (s/E, a, s′/E) = q if for all σ ∈ s/E,
we have T̃ (σ, a, s′/E) = q. Otherwise T (s/E, a, s′/E) is
not well defined. R(s/E, a) and O(a, s′/E, o) can be well-
defined or not in a similar way.

It turns out that with conditional relevance defined
as presented earlier, for all s, s′, a, o, we have that
T̃ (s/E, a, s′/E), R(s/E, a) and O(a, s′/E, o) are well-
defined. Thus equivalence classes in the original model can
be used as states in the reduced model, and the equivalence-
class versions of T̃ , R, and O define the reduced system dy-
namics. The fact that the reduced system dynamics are well-
defined implies that the abstract model is policy-equivalent
to the original. We include only the equivalence classes

2When we say a belief with X = x we mean a belief in which
only states with X = x have non-zero probabilities.

corresponding to reachable upstream values in the reduced
model.

Application to MiniLifeSurvey
Now we tie some of the formal concepts back to the Mini-
LifeSurvey domain introduced earlier.

When the robot is at position X1 = 3, the immediately
relevant variables are f IR(x) = {Y3, Y4}. Cell 3 is the cur-
rent cell, so Y3 affects the observation and the reward when
applying the sample action. Cell 4 is the cell just ahead of
the robot, so Y4 affects the observation when applying the
scan action.

Recall that in general all untouched variables are a-
predictable. In MiniLifeSurvey, the converse happens to be
true as well. With X1 = 3, the only untouched variable
is fU(x) = {Y5}. As the robot moves from west to east,
all other downstream variables have already had a chance to
affect observations.

With X1 = 3, the conditionally relevant variables are
fR(x) = {Y3, Y4}. Y1 and Y2 are irrelevant because there is
no way they can affect future observations or rewards. Y5 is
irrelevant because, even though it will become immediately
relevant when X1 = 4, it is currently untouched.

Figure 3 shows one example state transition for the move
action in the abstract model. The value of Y4 naturally re-
mains the same across the transition, since all the Yi vari-
ables are static. This could be inferred directly from the orig-
inal transition function T . On the other hand, the value of
Y5 was not specified before the transition. The distribution
over Y5 values after the transition is inferred from the prior
probability information Pr(Y5 = L) = 0.1 from the initial
belief. This information from b0 was effectively folded into
the transition function when T was transformed into T̃ .

Related Work
Boutilier & Dearden (1994) present a notion of globally ir-
relevant variables for MDPs; CIVA’s conditional irrelevance
is finer-grained, offering more opportunities for abstraction.
Baum & Nicholson (1998) suggest a non-uniform abstrac-
tion like that of CIVA, but they assume a context of inter-
leaving planning and execution, and they vary the level of
detail at different planning horizons.

Some approaches directly operate on the factored model
during the POMDP solution process. McAllester & Singh
(1999) represent beliefs compactly using lossy Boyen-
Koller belief simplification. St. Aubin, Hoey, & Boutilier
(2000) developed an ADD representation for MDPs, ex-
tended by Hansen & Feng (2000) to apply to POMDPs and
use a factored observation model.

When considering factored solvers like these, one must
balance the benefits of a compact representation against the
additional code complexity and overhead of operations on
factored data structures. For problems like LifeSurvey, CIVA
can provide enough abstraction that operating on the flat
model becomes tractable. This makes the problem compati-
ble with efficient flat POMDP solvers, avoiding the need for
a factored solver.



In other cases, CIVA abstraction might be useful as a pre-
processor for a factored solver. Some of the abstraction
performed explicitly by CIVA is already captured implic-
itly with an efficient factored representation; it is currently
an open question whether CIVA abstraction can significantly
speed up operations in the resulting factored model.

Givan, Dean, & Greig (2003) present a unifying theoreti-
cal framework and useful notation that encompasses many
approaches to state aggregation in MDPs and POMDPs.
CIVA could be accommodated by a slight extension of their
framework, taking into account initial belief information.

Pineau, Gordon, & Thrun (2003) provide just one exam-
ple of a number of approaches that use subtasks or macros to
facilitate abstraction. CIVA abstraction relies on other kinds
of structure, such as locality of variable effects and forward
progress rendering some variables irrelevant.

Poupart & Boutilier (2004) present a linear compression
technique that can losslessly capture some of the same struc-
ture as CIVA, and they also go further in providing good
lossy compressions. However, their approach apparently
does not leverage initial belief information, and in any case
the method is so different from CIVA that insight can be
gained by studying both.

Robotic Exploration Task
The LifeSurvey problem is motivated by advances in plan-
etary surface robotics. Future robots will be able to move
several kilometers through unexplored terrain in a single
command cycle. They will explore much more efficiently
if they have a number of capabilities that fall under the gen-
eral rubric of “science autonomy” (Castaño et al., 2003).

An exploring robot should use any available orbital data
to focus its scanning effort and ensure its path leads through
the most scientifically promising regions. If it detects a tar-
get of opportunity, it should automatically move closer and
take more detailed follow-up measurements. All of these
behaviors are included in the LifeSurvey problem, and the
POMDP framework allows us to model both initial uncer-
tainty and noisy observations collected during execution.

Figure 4: A LifeSurvey prior map.

The full LifeSurvey problem places the robot in a two-
dimensional map. The robot must move from the west edge
of the map to the east edge, but within the bounds of the
map it could choose its own path. Figure 4 shows an exam-
ple prior map. Differently shaded regions of the map have
different per-cell prior probabilities of containing detectable
life. In addition, the robot receives reward only the first time
it samples a cell with evidence of life in any given region.

We tested the performance of LifeSurvey policies both in
simulation and onboard a robot. Our robotic platform was
Zoë, a capable exploration robot developed as part of the
Life in the Atacama project, a three year effort to test high-
mobility science strategies for robotic astrobiology in the

Atacama Desert of Chile (Dohm et al., 2005). Our LifeSur-
vey testing with Zoë was conducted in a controlled outdoor
environment, shown in Figure 5. Small artificial markers
were used as stand-ins for signs of life, and scanning and
sampling actions were implemented using the robot’s on-
board cameras.

Figure 5: The Zoë rover executing a LifeSurvey policy.

In a single LifeSurvey action, the rover could either (1)
scan the three forward cells to the northeast, east, and south-
east, returning a noisy signal as to whether they contain life,
or (2) perform a simple move or sampling move to any one
of the forward cells. Sampling moves differed from simple
moves in that they caused the rover to take additional de-
tailed measurements as it entered the new cell. They were
intended to confirm the presence of life.

The observation returned by the scan action was a tuple of
three independent readings, one for each forward cell. The
possible values for each reading could be interpreted roughly
as “negative”, “maybe”, or “positive”. (CIVA did not make
use of the factored structure of the observations; as far as
it was concerned, each scan action simply returned one of
33 = 27 possible flat observations.)

The different possible values corresponded to different
confidence levels from the onboard detection routine search-
ing for artificial markers. The sensor noise parameters used
in the planning model were learned from a training set that
included detection routine outputs and ground truth labels
gathered over several runs in the testing environment. Cells
without markers returned negative/maybe/positive readings
roughly 72%/12%/16% of the time, respectively; cells with
markers had the distribution 9%/5%/86%.

The planning objective was to maximize expected reward.
The robot received a per-region reward: +5 points if the
robot entered the region, +20 points if it passed through a
life-containing cell in the region, or +50 points if it per-
formed a sampling move into a life-containing cell in the
region. Each action incurred a cost: -1 point for each move,
and -5 points for each scan or sampling move. Thus the rover
needed to find confirmed evidence of life in as many regions
as possible, while minimizing the number of detours, scans,
and sampling moves.

In the interest of expediency we developed a special-
purpose version of CIVA for LifeSurvey. The uncompressed
system dynamics were expressed procedurally, rather than in
a declarative representation like a decision tree or ADD. As
the immediate relevance structure for LifeSurvey was fairly
simple, we found it easiest to provide CIVA with a hard-
coded conservative labeling of immediately relevant vari-



ables rather than writing a general-purpose routine to check
I1-I3. Determination of predictability and conditional rele-
vance used constraint propagation as described earlier.

The LifeSurvey problem is well suited to CIVA. The
downstream variables in LifeSurvey include both per-cell
variables (presence or absence of life), and per-region vari-
ables (has life been sampled in this region yet?). Only the
robot’s current cell and cells just ahead are relevant, and re-
gions that the robot has permanently left behind or has yet
to encounter are irrelevant.

The instance of LifeSurvey shown in Figure 4 had 3.5 ×
1024 states in the unreduced flat representation versus 7,001
with the flat representation after CIVA. The majority of
the compression, a factor of about 5.8 × 1017, came from
abstracting away irrelevant per-cell variables. This factor
would be roughly the same for any map with the same num-
ber of cells. Abstracting away irrelevant per-region variables
compressed by another factor of about 200. This factor de-
pends on the shape of the regions; in the worst case, if re-
gions were arranged such that the robot could drive from any
region to any other, all per-region variables might be relevant
simultaneously, which would lead to very little compression.
The two sources of abstraction together reduced the size of
the model to 29,953 states, of which 7,001 were reachable.

All of our computation was performed on a 3.2 GHz
Pentium-4 processor with 2 GB of main memory. Less than
two seconds were required to generate and write out the
compressed flat model.

We approximately solved the compressed LifeSurvey
problem using the freely available ZMDP solver for
POMDPs (Smith, 2006). Specifically, ZMDP used the
FRTDP heuristic search algorithm in conjunction with gen-
eralizing representations for value-function bounds devel-
oped for the HSVI2 algorithm (Smith & Simmons, 2005).
After 103 seconds of wallclock time, the solver was able
to produce a policy whose expected long-term reward was
guaranteed to be within 20% of the optimal policy. In con-
trast, the uncompressed flat model would have been several
orders of magnitude too large to fit in memory.

Experimental Evaluation
We evaluated three policies on the LifeSurvey problem. Un-
der the blind policy, the rover simply moved to the right in a
straight line, always using sampling moves. The blind pol-
icy would confirm the presence of life only if it was found
on the straight-line path.

Under the reactive policy, the rover followed a set of sim-
ple hand-generated rules designed to efficiently confirm the
presence of life through combined use of scanning and sam-
pling. It moved forward through the map, performing a
scan action after each move, and detoured to take a sam-
pling move if life was detected in a scan. When life was not
detected, the reactive policy tried to stay on a preplanned
path that was optimized to pass by areas likely to contain
life. This is the kind of policy that a domain expert might
generate without use of AI planning techniques.

The third policy was the approximately optimal policy
output by POMDP planning using the CIVA-compressed
model.

The reactive and probabilistic policies were each evalu-
ated on 20 runs through the test course; there were 2 prior
maps, times 2 randomly drawn target layouts per map, times
5 runs per target layout. The blind policy could be evaluated
on the same target layouts in simulation since its actions did
not depend on uncertain sensor observations.

Policy Search acts Regions confirmed Reward
Blind 12.0 2.5 68
Reactive 20.0 3.4 61
POMDP 7.5 3.0 113

Figure 6: LifeSurvey experimental performance.

Results are shown in Figure 6. For each policy, we re-
port average values over the 20 runs. “Search acts” gives
the number of scan and sampling move actions used per run
(smaller values are better). “Regions confirmed” gives the
number of regions in which the presence of life was con-
firmed with a sampling move action (higher values are bet-
ter). Finally, “Reward” is the combined efficiency metric
that we were trying to optimize (higher values are better).

The POMDP policy performed best in terms of search ac-
tions and mean reward, by statistically significant margins.
The reactive policy confirmed the presence of life in more
regions, but at the cost of far more search time than the other
policies. The same ordering was also observed in simulation
results with a much larger number of trials.

The purpose of this experiment was not to demonstrate
that the particular POMDP policy we tested was ideal. We
could certainly have generated a better policy by increasing
the amount of time allotted to POMDP planning. With suffi-
cient effort coding and testing, we could probably even find
a manually-tuned heuristic policy that would outperform the
approximately optimal POMDP policy. Rather, the purpose
was to show that CIVA compression made it possible to
formulate LifeSurvey using the highly expressive POMDP
modeling framework, and within that framework to gener-
ate a policy with a strong quality guarantee and competitive
performance.

Conclusions
We presented CIVA, a novel approach for losslessly com-
pressing POMDPs with appropriate factored structure.
When applied to the LifeSurvey robotic exploration domain,
we were able to abstract and approximately solve POMDPs
whose uncompressed flat representation had up to 1024

states.
Effective use of CIVA relies on strong assumptions about

problem structure. There must be deterministic state vari-
ables to use as upstream variables. If the LifeSurvey model
included position uncertainty, position could not have been
used as an upstream variable.

The existence of conditionally irrelevant variables tends
to rely on a sense of “forward progress” through the system.
If the LifeSurvey robot was able to move backward through
the map, cells it passed by would no longer be irrelevant. If
the problem was cyclical in nature, there would typically be
no untouched state variables after the first cycle. (Although



some variables might still be a-predictable due to other types
of structure.)

Irrelevance also requires a certain amount of indepen-
dence between downstream variables. If downstream vari-
ables are correlated in the b0 prior, then they cannot be con-
sidered untouched according to our current definition (al-
though the requirements could be relaxed in some circum-
stances). Similarly, downstream variables can become en-
tangled if they affect each other’s transitions or they jointly
affect observations.

For these reasons, we expect that only a small propor-
tion of interesting POMDP problems would gain significant
benefit from the full CIVA compression algorithm described
here. However, many more problems have approximate con-
ditional irrelevance structure which could lend itself to lossy
compression extensions of CIVA.

Overall, the reader may wish to think of this paper less
as a description of an integrated algorithm and more as a
conceptual toolkit. Depending on the problem, some or all
of the CIVA concepts may be applicable. For instance, the
idea of rewriting the transition function based on some form
of reachability analysis in order to fold in information from
the initial belief and remove dependencies on the prior state
may work with other types of problem structure that we have
not considered.
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